On Roth's pseudo equivalence over rings

نویسنده

  • R. E. HARTWIG
چکیده

We characterize the pseudo-equivalence of a block lower triangular matrix T = [Tij ] over a regular ring, and its block diagonal matrix D(T ) = [Tii], in terms of suitable Roth consistency conditions. The latter can in turn be expressed in terms of the solvability of certain matrix equations of the form TiiX − Y Tjj = Uij .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on Roth ’ S Pseudo Equivalence over Rings

The pseudo-equivalence of a block lower triangular matrix T = [Tij ] over a regular ring and its block diagonal matrix D(T ) = [Tii] is characterized in terms of suitable Roth consistency conditions. The latter can in turn be expressed in terms of the solvability of certain matrix equations of the form TiiX − Y Tjj = Uij .

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

Pseudo-almost valuation rings

The aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎It is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

Almost valuation rings

The aim of this paper is to generalize the‎ ‎notion of almost valuation domains to arbitrary commutative‎ ‎rings‎. ‎Also‎, ‎we consider relations between almost valuation rings ‎and pseudo-almost valuation rings‎. ‎We prove that the class of‎ ‎almost valuation rings is properly contained in the class of‎ ‎pseudo-almost valuation rings‎. ‎Among the properties of almost‎ ‎valuation rings‎, ‎we sh...

متن کامل

On Algebraic Shift Equivalence of Matrices over Polynomial Rings

The paper studies algebraic shift equivalence of matrices over n-variable polynomial rings over a principal ideal domain D(n ≤ 2). It is proved that in the case n = 1, every non-nilpotent matrix over D[x] is algebraically strong shift equivalent to a nonsingular matrix. In the case n = 2, an example of non-nilpotent matrix over R[x, y, z] = R[x][y, z], which can not be algebraically shift equiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007